
WSGI 1.0 Cheat-sheet

Definitions
• Server: HTTP server that has Python embedded (or

it's itself a Python application), and calls the WSGI
application callable directly.

• Gateway: Server-independent Python-powered
application that calls the WSGI application callable
directly and “connects” it to the Web server.

• Application: The WSGI application callable.

• Middleware: Callable that wraps one or more WSGI
applications, to filter their requests and/or responses.

WSGI environ variables
There are many variables, but the following are possibly
the most commonly used ones when you want to do
something simple yet low-level without a framework:

• REQUEST_METHOD: The HTTP request method
(e.g., “POST”, “GET”, “HEAD”, “PUT”).

• SCRIPT_NAME: The portion of the URL path that
is not consumed by the application. For example, if
you have Trac running on http://example.org/trac/,
the script name for Trac will always be “/trac”. If
Trac is running on http://example.org/ then the script
name is an empty string.

• PATH_INFO: The portion of the URL path that is
consumed by the application. For example, if you
have Trac running on http://example.org/trac/, the
path info for Trac will always be everything after
“/trac”. It is the path info is the part of the URL path
not use by the script name.

• QUERY_STRING: The URL-encoded string that
contains the so-called “GET arguments”. If set, it
comes after the question mark in URLs.

• REMOTE_USER: If the user that made the request
has been authenticated successfully (in this request or
in a previous one), this variable represents his unique
user identifier (e.g., a name).

• HTTP_* variables: Those present in the HTTP
request, in upper case and with hyphens replaced
with underscores. For example, User-Agent becomes
HTTP_USER_AGENT.

• wsgi.input: The file-like object that contains the
body of the request.

• wsgi.url_scheme: The scheme portion of the URL
(“http” or “https”).

API
WSGI application
It can be any callable. It takes two positional arguments,
the WSGI environ and the server-provided
start_response() callable. To send a response,
start_response() must be called to send the headers first
and then an iterable representing the body must be
returned.

WSGI middleware
WSGI middleware must be a callable with the same API
as a WSGI application. Servers or gateways must not try
to distinguish an application from a piece of middleware.

WSGI environ
A dict instance. Not a dictionary-like object.

start_response()
A callable provided by the server or gateway on every
request, used by the WSGI application to send its

response headers. It takes two positional arguments: The
HTTP status string (e.g., “200 OK”) and a list made up of
tuples whose first element is the header name and the
second is the header value.

It returns a callable which can be used by legacy
applications to send the body (aka write() callable), if
they cannot return an iterable. It can be called multiple
times and its only argument is a string to be sent.

File wrapper
If the server or gateway supports a high performance
method to send files, it'd be available in the WSGI
environ as “wsgi.file_wrapper”.

It's a callable that takes one mandatory argument (the
file-like object whose contents should be sent) and an
optional size hint (the amount of bytes that should be sent
at the same time).

wsgi.errors
A file-like object in the WSGI environ where non-fatal
errors should be written. The messages are usually sent to
the server's main error log.

Links
• Web-SIG: The best place to ask WSGI-related

questions:
http://mail.python.org/mailman/listinfo/web-sig

http://wsgi.org/

• PEP-333: http://www.python.org/dev/peps/pep-0333/

WSGI “shops”
• Paste: http://www.pythonpaste.org

• Repoze: http://www.repoze.org/

Copyright 2010 by Gustavo Narea <http://gustavonarea.net>. Licensed under the Creative Commons Attribution 2.0 UK: England & Wales License.

	Definitions
	WSGI environ variables
	API
	WSGI application
	WSGI middleware
	WSGI environ
	start_response()
	File wrapper
	wsgi.errors

	Links
	WSGI “shops”

