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Who's speaking

● ¡Hola!
● Web Application Developer.
● Contributes to WSGI projects.



  

Goals

● Explain what your framework does under-
the-hood.

● More efficient troubleshooting.
● Integrate third party libraries and 

applications.
● Write framework-independent libraries and 

applications.
● Learn about existing WSGI-based software.



  

Updates after the tutorial

● This presentation was modified to refer to 
working examples and fix errata.

● You probably downloaded this presentation 
with the examples. If not, go to 
gustavonarea.net/talks/ to get them.

● Read the instructions on how to install some 
of them.

● They are not essential to understand the 
presentation.



  

The big picture
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8.Limitations.
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Introduction



  

What's WSGI?

HTTP = HyperText Transfer Protocol
WSGI = Web Server Gateway Interface



  

Key facts about WSGI

● Python “Standard” (PEP-333).
● Created in 2003.
● Inspired by CGI.
● Officially supported by all the popular 

frameworks.
● Applications can run on virtually any HTTP 

server.



  

Servers and gateways

● Server with Python embedded:

● Python-powered gateway:



  

Requests and responses



  

HTTP and WSGI



  

HTTP requests and responses

Request

GET /greeting HTTP/1.1
Host: example.org
User-Agent: EP2010 Client

Response

HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 12
Content-Type: text/plain

empty line
Hello world!

Request

POST /login HTTP/1.1
Host: example.org
User-Agent: EP2010 Client
Content-Length: 25

empty line
username=foo&password=bar

Response

HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 18
Content-Type: text/plain

empty line
Welcome back, foo!



  

HTTP and WSGI requests

{
'REQUEST_METHOD': “POST”,
'PATH_INFO': “/login”,
'SERVER_PROTOCOL: “HTTP/1.1”,
'HTTP_HOST': “example.org”,
'HTTP_USER_AGENT': “EP2010 Client”,
'CONTENT_LENGTH': “25”,
'wsgi.input': StringIO(“username=foo&password=bar”),
}

POST /login HTTP/1.1
Host: example.org
User-Agent: EP2010 Client
Content-Length: 25

empty line
username=foo&password=bar



  

WSGI environ variables

They come from:
● CGI (e.g., PATH_INFO).
● HTTP request (HTTP_*).
● WSGI (wsgi.*).
● Server/gateway (e.g., 

mod_wsgi.process_group).
● 3rd party libraries.
● Yourself.



  

Raw environ variables

● Request header values are not parsed 
(some are decoded).

● Some header values are useless as is (e.g., 
cookies, GET/POST arguments).

● Others are inconvenient as strings (Content 
Length, If-Modified-Since).

● #1 reason to use a Web framework.



  

HTTP and WSGI responses
HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 18
Content-Type: text/plain

empty line
Welcome back, foo!

(
  “200 OK”,
  [
    (“Server”, “EP2010 Server”),
    (“Content-Length”, “18”),
    (“Content-Type”, “text/plain”),
  ]
)

[“Welcome back, foo!”]

Note that:

●It's not a single object.
●The HTTP version is 
not set.



  

WSGI Applications



  

Simple static application

def simple_app(environ, start_response):
    status = "200 OK"
    body = "Hello world!"
    headers = [
        ("Server", "EP2010 Server"),
        ("Content-Length", str(len(body))),
        ("Content-Type", "text/plain"),
    ]

    # Send the headers:
    start_response(status, headers)

    # Now send the body:
    return [body]



  

Response from simple_app()

HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 12
Content-Type: text/plain

empty line
Hello world!



  

Simple dynamic application
def dynamic_app(environ, start_response):
    headers = [
        ("Content-Type", "text/plain"),
    ]

    if environ['REQUEST_METHOD'] == “GET”:
        status = "200 OK"
        body = "Hello world!"
    else:
        status = "405 Method Not Allowed"
        body = "What are you trying to do?"
        headers.append((“Allow”, “GET”))

    headers.append(("Content-Length", str(len(body))))

    start_response(status, headers)
    return [body]



  

Response from dynamic_app()

HTTP/1.1 405 Method Not Allowed
Content-Type: text/plain
Allow: GET
Content-Length: 26

empty line
What are you trying to do?

POST /login HTTP/1.1
Host: example.org
User-Agent: EP2010 Client
Content-Length: 25

empty line
username=foo&password=bar



  

Methods to send the body

● Iterable.
● write() callable; discouraged in new 

applications.
● File wrapper, to send file-like objects.



  

Body as an iterable

def simple_app(environ, start_response):
    status = "200 OK"
    body = ["Hello", " ", "world", "!"]
    headers = [
        ("Server", "EP2010 Server"),
        ("Content-Length", str(len("".join(body)))),
        ("Content-Type", "text/plain"),
    ]

    # Send the headers:
    start_response(status, headers)

    # Now send the body, without brackets:
    return body



  

The write() callable
def simple_app(environ, start_response):
    status = "200 OK"
    body = "Hello world!"
    headers = [
        ("Server", "EP2010 Server"),
        ("Content-Length", str(len(body))),
        ("Content-Type", "text/plain"),
    ]

    # Send the headers and get the writer:
    write = start_response(status, headers)

    # Now send the body:
    write(body)

    # Continue “writing” if necessary...



  

File wrappers
FILE = "/tmp/hello.txt"

def simple_app(environ, start_response):
    status = "200 OK"
    fd = open(FILE)
    headers = [
        ("Server", "EP2010 Server"),
        ("Content-Length", str(os.path.getsize(FILE))),
        ("Content-Type", "text/plain"),
    ]

    start_response(status, headers)
    
    if "wsgi.file_wrapper" in environ:
        return environ['wsgi.file_wrapper'](fd, 1024)
    else:
        return iter(lambda: fd.read(1024), "")



  

WSGI apps in the frameworks

● CherryPy: cherrypy.Application()
● Django: 

django.core.handlers.wsgi.WSGIHandler()
● Pylons and TurboGears 2: 

{PROJECT}.config.middleware.make_app()
● Repoze BFG: repoze.bfg.paster.get_app()
● Zope 3: 

zope.app.wsgi.getWSGIApplication()



  

Example

● Open app_serve_dir.py.
● See how we return the body with 

wsgi.file_wrapper or just a regular iterable.
● Try it! Run `python app_serve_dir.py'



  

Interesting/useful applications

● Paste's Proxy, CGI and WaitForIt 
applications.

● Popular DVCSs: Bazaar and Mercurial.
● Trac, MoinMoin, etc.
● WSGI X-Sendfile.
● twod.wsgi, for Django users.



  

WSGI Middleware



  

Do you remember this?



  

Filtering requests

● Run the WSGI application conditionally.
● Change the request the application will 

receive.
● Add variables to the WSGI environ, which 

could be consumed by the application later.
● Log them.



  

Filtering responses

● Add/modify/remove HTTP headers.
● Update the response body.
● Transform the body into something else.
● Log the responses.



  

Examples

● Open mw_always_authenticated.py and try 
it!

● Then check mw_wiki_protector.py.
● See how we can control Trac with WSGI 

middleware?



  

Interesting/useful middleware

● Paste's URL mapper, request logger, WDG 
HTML validator and Lint.

● repoze.who, repoze.what and repoze.profile. 
● Routes, Selector or Otto.
● Beaker.
● Many more on pythonpaste.org, repoze.org 

and wsgi.org.



  

Testing and 
debugging



  

WSGI better than global data

● No global variables. They're evil!
● No messing around with Stdin, Stdout or 

Stderr. So no echo à la PHP!
● The request is just a dictionary.
● The response is made up of a status string, 

a list of headers and a body iterable.



  

Functional tests with WebTest

● WebTest is a functional test framework for 
WSGI applications.

● It calls your application directly, without 
sockets.

● You can inspect the Pythonic response.
● HTML body parsed with BeautifulSoup, 

ElementTree or lxml.
● Json body parsed with simplejson.
● Try test_trac.py.



  

Debugging techniques

● Inspect the requests and responses (see 
mw_debugger.py).

● Error catching (see mw_error_catcher.py).



  

Handling errors in WSGI

● environ['wsgi.errors']: Non-critical errors (see 
app_serve_dir_errors.py).

● exc_info: Fatal errors (see 
mw_error_catcher.py).



  

Embedded Web 
applications



  

What can be “embedded”

● Python Web applications.
● Java/PHP/Perl/etc Web applications.
● Standalone web sites.
● Any piece of software with a Web interface.



  

Why embed applications

● An alternative to many Web server modules.
● Write “middleware” for them.
● For example, Single Sign-On, authorization.



  

Example embedded 
applications

● Try the Single Sign-On system between 
Django and Trac in the Weesgo application.

● Try running the PHP-powered WordPress 
under WSGI (run_wordpress.py).



  

Deployment



  

Server advantages

● Embedded.
● Usually easier to set up.
● Better performance.



  

Gateway advantages

● Non-embedded.
● Applications can be run by different users.
● No need to restart the Web server to 

upgrade code.
● Applications with different versions of 

Python.
● No shared libraries conflicts.



  

Server examples

● Apache + mod_wsgi
● Gunicorn.
● Tornado.
● Paste Script (paster).
● Django's `manage runserver'



  

Gateway examples

● CGI and the like (FastCGI, SCGI).
● Apache JServ Protocol (AJP).
● Apache + mod_wsgi in daemon mode (one 

Python version limitation still present).



  

The fine print
(Limitations)



  

No Python 3 support

● Bytes vs (unicode) strings.
● Bytes don't behave like strings anymore.
● WSGI 1.0 is based on bytes (str in Python 

2).
● No consensus, yet. But getting there.



  

Decoded values

● CGI requires paths to be decoded (those 
%XX strings in the URL).

● Cannot distinguish %2F from /
● Browsers don't help either.



  

No unknown length wsgi.input

● Some libraries use CONTENT_LENGTH=-1
● Others use “0”, which actually means “there 

are no bytes in wsgi.input”.
● The right way to do it is in a chucked 

request content, with “Transfer-Encoding: 
chunked”. But it's not part of WSGI 1.0.



  

Conclusion



  

Summary

● WSGI means interoperability.
● More software for you to use.
● Pretty much everybody uses WSGI; even 

unconsciously.
● WSGI 1.0 is not perfect.
● We've basically covered PEP-333.



  

What I didn't talk about

● wsgiref: Like the Paste project, with less 
functionality. But it's part of the stdlib.

● Details in PEP-333 which I didn't find 
interesting for application developers.

● mod_python: It's not WSGI and it's dead.



  

Frameworks are not the only 
true answer

● Thanks to WSGI:

– Pythonic wrappers for the requests and 
responses: WebOb.

– Request dispatchers: Routes, Selector, Otto.

– Auth: repoze.who and repoze.what.

– Sessions: Beaker.
● WSGI-independent:

– ORM: SQLAlchemy, Elixir, SQLObject.

– Templates: Jinja, Mako, etc.

– Form validation: FormEncode.



  

That's it. Thanks!
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