

WSGI from Start to
Finish

EuroPython 2010. Gustavo Narea

Who's speaking

● ¡Hola!
● Web Application Developer.
● Contributes to WSGI projects.

Goals

● Explain what your framework does under-
the-hood.

● More efficient troubleshooting.
● Integrate third party libraries and

applications.
● Write framework-independent libraries and

applications.
● Learn about existing WSGI-based software.

Updates after the tutorial

● This presentation was modified to refer to
working examples and fix errata.

● You probably downloaded this presentation
with the examples. If not, go to
gustavonarea.net/talks/ to get them.

● Read the instructions on how to install some
of them.

● They are not essential to understand the
presentation.

The big picture

1.Introduction.

2.HTTP and WSGI.

3.WSGI applications.

4.WSGI middleware.

5.Testing and debugging.

6.Embedded Web applications.

7.Deployment.

8.Limitations.

9.Conclusion.

Introduction

What's WSGI?

HTTP = HyperText Transfer Protocol
WSGI = Web Server Gateway Interface

Key facts about WSGI

● Python “Standard” (PEP-333).
● Created in 2003.
● Inspired by CGI.
● Officially supported by all the popular

frameworks.
● Applications can run on virtually any HTTP

server.

Servers and gateways

● Server with Python embedded:

● Python-powered gateway:

Requests and responses

HTTP and WSGI

HTTP requests and responses

Request

GET /greeting HTTP/1.1
Host: example.org
User-Agent: EP2010 Client

Response

HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 12
Content-Type: text/plain

empty line
Hello world!

Request

POST /login HTTP/1.1
Host: example.org
User-Agent: EP2010 Client
Content-Length: 25

empty line
username=foo&password=bar

Response

HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 18
Content-Type: text/plain

empty line
Welcome back, foo!

HTTP and WSGI requests

{
'REQUEST_METHOD': “POST”,
'PATH_INFO': “/login”,
'SERVER_PROTOCOL: “HTTP/1.1”,
'HTTP_HOST': “example.org”,
'HTTP_USER_AGENT': “EP2010 Client”,
'CONTENT_LENGTH': “25”,
'wsgi.input': StringIO(“username=foo&password=bar”),
}

POST /login HTTP/1.1
Host: example.org
User-Agent: EP2010 Client
Content-Length: 25

empty line
username=foo&password=bar

WSGI environ variables

They come from:
● CGI (e.g., PATH_INFO).
● HTTP request (HTTP_*).
● WSGI (wsgi.*).
● Server/gateway (e.g.,

mod_wsgi.process_group).
● 3rd party libraries.
● Yourself.

Raw environ variables

● Request header values are not parsed
(some are decoded).

● Some header values are useless as is (e.g.,
cookies, GET/POST arguments).

● Others are inconvenient as strings (Content
Length, If-Modified-Since).

● #1 reason to use a Web framework.

HTTP and WSGI responses
HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 18
Content-Type: text/plain

empty line
Welcome back, foo!

(
 “200 OK”,
 [
 (“Server”, “EP2010 Server”),
 (“Content-Length”, “18”),
 (“Content-Type”, “text/plain”),
]
)

[“Welcome back, foo!”]

Note that:

●It's not a single object.
●The HTTP version is
not set.

WSGI Applications

Simple static application

def simple_app(environ, start_response):
 status = "200 OK"
 body = "Hello world!"
 headers = [
 ("Server", "EP2010 Server"),
 ("Content-Length", str(len(body))),
 ("Content-Type", "text/plain"),
]

 # Send the headers:
 start_response(status, headers)

 # Now send the body:
 return [body]

Response from simple_app()

HTTP/1.1 200 OK
Server: EP2010 Server
Content-Length: 12
Content-Type: text/plain

empty line
Hello world!

Simple dynamic application
def dynamic_app(environ, start_response):
 headers = [
 ("Content-Type", "text/plain"),
]

 if environ['REQUEST_METHOD'] == “GET”:
 status = "200 OK"
 body = "Hello world!"
 else:
 status = "405 Method Not Allowed"
 body = "What are you trying to do?"
 headers.append((“Allow”, “GET”))

 headers.append(("Content-Length", str(len(body))))

 start_response(status, headers)
 return [body]

Response from dynamic_app()

HTTP/1.1 405 Method Not Allowed
Content-Type: text/plain
Allow: GET
Content-Length: 26

empty line
What are you trying to do?

POST /login HTTP/1.1
Host: example.org
User-Agent: EP2010 Client
Content-Length: 25

empty line
username=foo&password=bar

Methods to send the body

● Iterable.
● write() callable; discouraged in new

applications.
● File wrapper, to send file-like objects.

Body as an iterable

def simple_app(environ, start_response):
 status = "200 OK"
 body = ["Hello", " ", "world", "!"]
 headers = [
 ("Server", "EP2010 Server"),
 ("Content-Length", str(len("".join(body)))),
 ("Content-Type", "text/plain"),
]

 # Send the headers:
 start_response(status, headers)

 # Now send the body, without brackets:
 return body

The write() callable
def simple_app(environ, start_response):
 status = "200 OK"
 body = "Hello world!"
 headers = [
 ("Server", "EP2010 Server"),
 ("Content-Length", str(len(body))),
 ("Content-Type", "text/plain"),
]

 # Send the headers and get the writer:
 write = start_response(status, headers)

 # Now send the body:
 write(body)

 # Continue “writing” if necessary...

File wrappers
FILE = "/tmp/hello.txt"

def simple_app(environ, start_response):
 status = "200 OK"
 fd = open(FILE)
 headers = [
 ("Server", "EP2010 Server"),
 ("Content-Length", str(os.path.getsize(FILE))),
 ("Content-Type", "text/plain"),
]

 start_response(status, headers)

 if "wsgi.file_wrapper" in environ:
 return environ['wsgi.file_wrapper'](fd, 1024)
 else:
 return iter(lambda: fd.read(1024), "")

WSGI apps in the frameworks

● CherryPy: cherrypy.Application()
● Django:

django.core.handlers.wsgi.WSGIHandler()
● Pylons and TurboGears 2:

{PROJECT}.config.middleware.make_app()
● Repoze BFG: repoze.bfg.paster.get_app()
● Zope 3:

zope.app.wsgi.getWSGIApplication()

Example

● Open app_serve_dir.py.
● See how we return the body with

wsgi.file_wrapper or just a regular iterable.
● Try it! Run `python app_serve_dir.py'

Interesting/useful applications

● Paste's Proxy, CGI and WaitForIt
applications.

● Popular DVCSs: Bazaar and Mercurial.
● Trac, MoinMoin, etc.
● WSGI X-Sendfile.
● twod.wsgi, for Django users.

WSGI Middleware

Do you remember this?

Filtering requests

● Run the WSGI application conditionally.
● Change the request the application will

receive.
● Add variables to the WSGI environ, which

could be consumed by the application later.
● Log them.

Filtering responses

● Add/modify/remove HTTP headers.
● Update the response body.
● Transform the body into something else.
● Log the responses.

Examples

● Open mw_always_authenticated.py and try
it!

● Then check mw_wiki_protector.py.
● See how we can control Trac with WSGI

middleware?

Interesting/useful middleware

● Paste's URL mapper, request logger, WDG
HTML validator and Lint.

● repoze.who, repoze.what and repoze.profile.
● Routes, Selector or Otto.
● Beaker.
● Many more on pythonpaste.org, repoze.org

and wsgi.org.

Testing and
debugging

WSGI better than global data

● No global variables. They're evil!
● No messing around with Stdin, Stdout or

Stderr. So no echo à la PHP!
● The request is just a dictionary.
● The response is made up of a status string,

a list of headers and a body iterable.

Functional tests with WebTest

● WebTest is a functional test framework for
WSGI applications.

● It calls your application directly, without
sockets.

● You can inspect the Pythonic response.
● HTML body parsed with BeautifulSoup,

ElementTree or lxml.
● Json body parsed with simplejson.
● Try test_trac.py.

Debugging techniques

● Inspect the requests and responses (see
mw_debugger.py).

● Error catching (see mw_error_catcher.py).

Handling errors in WSGI

● environ['wsgi.errors']: Non-critical errors (see
app_serve_dir_errors.py).

● exc_info: Fatal errors (see
mw_error_catcher.py).

Embedded Web
applications

What can be “embedded”

● Python Web applications.
● Java/PHP/Perl/etc Web applications.
● Standalone web sites.
● Any piece of software with a Web interface.

Why embed applications

● An alternative to many Web server modules.
● Write “middleware” for them.
● For example, Single Sign-On, authorization.

Example embedded
applications

● Try the Single Sign-On system between
Django and Trac in the Weesgo application.

● Try running the PHP-powered WordPress
under WSGI (run_wordpress.py).

Deployment

Server advantages

● Embedded.
● Usually easier to set up.
● Better performance.

Gateway advantages

● Non-embedded.
● Applications can be run by different users.
● No need to restart the Web server to

upgrade code.
● Applications with different versions of

Python.
● No shared libraries conflicts.

Server examples

● Apache + mod_wsgi
● Gunicorn.
● Tornado.
● Paste Script (paster).
● Django's `manage runserver'

Gateway examples

● CGI and the like (FastCGI, SCGI).
● Apache JServ Protocol (AJP).
● Apache + mod_wsgi in daemon mode (one

Python version limitation still present).

The fine print
(Limitations)

No Python 3 support

● Bytes vs (unicode) strings.
● Bytes don't behave like strings anymore.
● WSGI 1.0 is based on bytes (str in Python

2).
● No consensus, yet. But getting there.

Decoded values

● CGI requires paths to be decoded (those
%XX strings in the URL).

● Cannot distinguish %2F from /
● Browsers don't help either.

No unknown length wsgi.input

● Some libraries use CONTENT_LENGTH=-1
● Others use “0”, which actually means “there

are no bytes in wsgi.input”.
● The right way to do it is in a chucked

request content, with “Transfer-Encoding:
chunked”. But it's not part of WSGI 1.0.

Conclusion

Summary

● WSGI means interoperability.
● More software for you to use.
● Pretty much everybody uses WSGI; even

unconsciously.
● WSGI 1.0 is not perfect.
● We've basically covered PEP-333.

What I didn't talk about

● wsgiref: Like the Paste project, with less
functionality. But it's part of the stdlib.

● Details in PEP-333 which I didn't find
interesting for application developers.

● mod_python: It's not WSGI and it's dead.

Frameworks are not the only
true answer

● Thanks to WSGI:

– Pythonic wrappers for the requests and
responses: WebOb.

– Request dispatchers: Routes, Selector, Otto.

– Auth: repoze.who and repoze.what.

– Sessions: Beaker.
● WSGI-independent:

– ORM: SQLAlchemy, Elixir, SQLObject.

– Templates: Jinja, Mako, etc.

– Form validation: FormEncode.

That's it. Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

